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We determine sufficient conditions for the sueceasfuf campIetion of an 
encounter process for a controlled system of specified purpose,described 
by a differential equation in Hilbert space with, generally, unbounded ape- 
rator. The arguments are based on a method of constructing the resolving 
controls on the feedback principle playing here the role of Krasovskii’s 
extremal aiming principle /1, 2,‘. The class of controlled systems to be 
examined includes, for example, certain systems described by parabolic and 
hyperbolic partial differential equations f3- II/. The paper abuts the investi- 
gations in fl, 2, X2-171. 

1 1 We consider the controlled system 

X* ft) - d,r (E) + A, ZL - Ag -+- w (& 4, < t < 6 (1.1) 

Here;2:(tf is the plant’s state at instant 6, being an element of a real Hilbert space 
Hi; td, c are coninaol parameters subject to the constraints it E P C Hsl ii E 

Q c H:r; f’, Q are convex bounded closed sets, IIs, Ifa are real reflexive Ba- 
nach spaces; Ai (i .‘r 1, 2, 3) is a linear operator from Hi into Hi, bounded 
for i = 2, 3 ; A, generates in W, a strongly continuous semigroup /lS/ {F (t), 
f > 01 satisfying the condition 11 F (t) [II < exp wt, 1 > 0 for some o (11 - 11: 

is- the. symbol for the norm in Hif; Tut (t) is a giveu ~~~tion~~te~rable on I$,, S] 
(here and su~equen~y, i~te~abili~ is understood in Bochner’s sense, (s~ong) measur- 
ability is understood in. the Lebesgue sense, the derivative in (1.1) is understood as 
the limit with respect to the norm in Niof the corresponding finitewdifference re- 
lation /181’)* 

The encounter problem to be examined is the following, A closed set 1lf is 
given in space ff,. We are required to find a method for forming the control U 
by the feedback principle ft~ ftl 2 u (5, 3 (t))>, ensuring the contact of point J: f9 
with target M at the i~tant t -- 6 when control v is formed by any method de- 
veloping a measurable realization v it] with values in Q for almost all 8 . (In 
particular, we do not excludk the method of forming ~ovttrol u, which uses at each 
instant d information on the control u !lf at t&s same instant), 

’33s~ encounter problem described was auaiyzed in j”13f wherein, in particular,a 
mathematical formalization of it was proposed, the necessary and sufficient solva- 
bility conditions were stated, and a method for consmtcting the resolving controls 
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was given (‘“) . In the general case the verification of these conditions anti :,.e con- 

struction of the encounter strategies are very difficult. However, as in /I, 2, 151, we can 

find (and this is the aim of the present paper) a wide class of controlled systems when 

such a verification can be effected by a sufficiently simple and effective concretization 

of the encounter strategy construction procedure found in /13/. 

Let us make the problem statement more precise. A rule which associates a set 

U “0;) C 1’ with each position p == {t, z}, 1 E it,,, 8’1, 5 E HI, is called a 

strategy U. Let A be a finite partitioning of [t,,, 61 by the points ti (Q = t,, 

‘ti < %ftls i-=0,. . . . . m (A)), 6 (A) = maxi (“ii1 - xi), The function 

i(t), == z (t, p(), U)A, t, < t < 6, equal to 

32 @)A =F@- to) x0 + i fJ @ - E) (A& 1%1 - AU [El + ?J (%)I d% 
fo 

is called the motion of system (1.1) from the position p. = {to, x0}, corresponding 

to strategy U. Here u [t] is the control dictated by strategy U: u it1 = u [ril E 

u tzi7 2 ('CJA), ri \( t < zf+l; i z 0, es., m (A); u [tj is some measurable rea- 

lization of control u for almost all t with values in v. 

The original control problem is formalized in the following way /13/. Let fif” be a 

closed e-neighborhood of M in HI. 
Problem 2.1. Construct the strategy u with the property : for every number 

t > 0 there exists a number 6, > 0 such that the inclusion IC (@))a e ME. is ful- 

filled for all motions x (t)a = z (t, po, u)A with 6 (A) < 6,. 
Sufficient conditions for the solvability of Problem 2.1 are found in Sect. 3. 

Note 2.1. The concept of motion .X {@A corresponds to the concept of the solu- 

tion of Eq. (1.1) in the generalized sense (see /3-7/f. As a matter of fact, if the initial 

state z,, belongs to the domain of operator A, and the realization of control v (and the 
perturbation W) is a sufficiently smooth time function, then the motion of each interval 

[r,, pi) is the classical solution of Eq. (1.1). 

3, For what follows we require certain notions from /13/. Let there be a system of 

nonempty sets Bt c HI, to < t < 6. For 2 E H, we denote r (t, x)=inf 11 z - 
y Ifi, y E Bi. Let Z (z, B,) be the collection of all weak limits of all possible se- 

quences &J C: &, weakly convergent in Ht t minimizing the functional /J z - 9 i/t. 
Obviously, 2 (II’, R,) # @, The strategy 

U” = U” (t, 2) = (2s” 1 (A,* (y - z), 22”)~ = 

max <A,* (y - 4, u)2, y E 2 (x, Bd) 

UEP 

(3.1) 

is said to be extremal to the sets Bt, to < t <, 6 /13/. (Here and later on, A* is 
the operator adjoint to operator A, <f, z>~ is the value of functional i on the element 
z E Hi). The concept of strategy U” given here is a natural development of the con- 

( * ) Analogous questions are discussed in : Osipov, III. S., Differential games in distri- 
buted-parameter systems. Reports Abstracts Third All-Union Conf. on Game Theory, 
Odessa, 1974. 
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cept of an extremal strategy from /I., 2, 15, 16/, 

Note 3.1. Ey definition the strategy U is, generally speaking, a multivalued 
mapping of [to, 6f x H1. into P. It is not difficult to see that everything said in the 

present paper is preserved if we restrict ourselves to the single-valued mappings. Here, 

by UC we should understand a rule associating a certain element u.O, defined in (3.1), 

with each position p . 

The functions 7.~ (t) (Y (t)) , measurable on some time interval, for almost all t 
with values in P (Q) ,are called programs. The system of nonempty sets Bt, to < 
t < 6 is said to be strongly u-stable if the following condition is fulfilledd : for every 

quantities t, cs It,, Q), t* E (t*, N, z* CE Bt, and the program *u (t), t, \< 
t < t*, there exists a program 24 (t), t, < t < t*,with the proper7 

F(t*- t*)r* -tf qt* - 8 (As@ (8 - Asu (E) + w (E)) d&z By. 
t* 

The following statement,revealing a property of strategy Ue, is valid. 

Lemma 3.1. The strategy Ue exaemal to the system of strongly u-stable sets 

Bt, t0 f t < 6, possesses the property : for every number e> 0 there exist num- 
bers 6, > 0 and u > 0 such that for any motion z (t)a = x (t, {ta, to), Ue)a 
the inequality ir (tJ Z (t)a) < E, to < t < 6, is fulfilled if only 6 (A) < 6, and 

r (to? 50) G a. 
The lemma is proved by the plan of proof of the analogous statements in /I, 14, 1%‘. 

Under the condition of stability of sets B, and in the presence of the bound 8 P (t) j/ fQ 

axp ot the method of choosing controls ud [tl which generate motions 2 (t, Par Ua), 

in correspondence with rule (3. l), guarantees the inequality 

rs (zi+r* I (r++r)A) f ti + 06 (A)) rs (vi> 5 (%)A) + 0 (6 (A)) 

where o (6)/e -..+ 0 as El -+ 0. Hence we conclude that for every number B > 0, all 
motions 2 @)a = 5 (t, PO, ti”)A satisfy the inequality 

r (t, 2 (t)J Q B exp 2w(t - to). to S t d 6 

if only 6 (A) < i&, r (to, Q) =G a9 where 6, > 0 and a > 0 are sufficiently small 

numbers. Xris proves the lemma’s assertion. 

From Lemma 3.1 follows, trivially, 

Theorem 3.1. Let there be a system of strongly u-stable sets Bt, to < t < 6, 
where Be c hf. If r (to, x0) = 0, then strategy IJ*, extremal to this system ofsets, 

solves Problem 2.1. 
In connection with Theorem 3.1 th.e question arises of the existence and the colf~truc- 

tion of a system of sets with the properties indicated. In such a system o,f sets we can 

choose the collection of sets Kt, t, < t < 6, from /13/ (under the condition that 

Iit, # $; however,if Kt, = @, then Problem 2.1 does not have a solution /13/). The 
construction of sets Kt in the general case is very difficult. However, as in /l, 15/, we 
can delineate the cases when the sets Et admit of an effective description. Let us dis- 

cuss this question. 

4. Everywhere below it is assumed that M is a convex closed bounded set in HI. 

Py the symbol Nt, we denote the collection of all elements 1c E H, with the property: 
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for every program V(t), ;I*< t $ 6 there exists a program u (t), t, < t < 19, 
for which 

rCv,ti(~;t*,“)=F(6--*)s+ j F($+ 
(4.1) 

- t> (A& (0 - &u (0 + w(t)) & f M 

Let {n}s denote the collection of all programs n (t) on interval q. &ing the the- 

orem on the separability of convex sers /6, 17/, it is not difficult to verify (see/IS/, for 
example) the validity of 

Lemma 4.1. 1c E Nt if and only if 

Y (k z) = SUPa cp b-l, f? 4 \c 0, II q III < 1 (4.2) 
Here 

We introduce the following conditions, 

Condition A. For any t E ItO, 61 the functional 

x Pl? 0 = PLl(% t) - PU (% 0 + :J; (% 4)l (4.3) 

is weakly upper-semicontinuous in H, and when y (t, z) > 0 the upper bound In(4.2) 

is reached on the single element ‘rl” =-z q” (t, 5). 
Condition B. For any t E (to, .c)) theset 

is compact in .U1. 
Lil 

Note 4.1. Condition A corresponds here to the regularity condition from the the- 

ory of position differential games 0, 2,‘. This condition is fulfilled, for example, if for 

any t E [t,,e) the functional x (q, tj of (4.3) is concave in q (see Corollary 2 in /13/). 

As a matter of fact, in this case /18/ the functional mentioned is weakly upper-semicon- 
tinuous in H, for each t E [to, 6) and, further, when y (1, .T) > o , by virtue of the strict 
convexity of a sphere in fl, ) the upper bound of the positively homogeneous and con- 
cave functional r+ (q, t, z) is achieved on a single element of the unit sphere. In its own 
turn, the concavity of x tn, I) for any t holds, for example, if for any t a convex set 
R (t) C H, exists such that F (b - t) A,P = F (S - t)A& + R (0. ‘I’bis is an analog 

of the uniformity condition from the theory of differential games /l, 2/. (An algebraic 
sum of sets stands on the right in (4.4) ). 

Note 4.2. Condition B is fulfilled, for example, for a wide class of parabolic sys- 

tems (see 151 and Sect. 5 below). It is fulfilled as well when 11* =; &, and A,u -= bu, 

where b E lf,, since now the operator fi (IL) from (4.4). mapping I.? ([to, tl. E,,) into 
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Hi, is completely continuous (see /4/ ), as is easily verified. 

Theorem 4.1. Let Conditions A and B be fulfilled. If Nt, # $, then Nt + @, 

for any t E [to, S] and the system of sets Nt, t, < t < @ is strongly u-stable. 

This assertion is proved by the plan of proof of Theorem 2.1 in /15/ and relies on the 

fixed point theorem in /lQ/ and on Lemmas 4.2, 4.3 following below. 
Lemma 4.2. Under Condition A the element q” (t, .z) is weakly continuous in 

r on the set lir, \ Nt for each fixed t E [to, 8) in the followingsense: if {sk) c 

JT,\Nt,5a--+5EH1\Nt, then q’(t,+J 7 $(t, s). 
The validity of Lemma 4.2 is directly verifiable. 

Corollary, Under Condition A the element r~* (t, X) is wondrous on the set 

Hr\N, for each fixed t E It,, S]. 
This assertion follows immediately from Lemma 4.2 since 11 q” (t, 2) 11 = 1 for any 

x E Hi\Nt and space Hi is reflexive. 
Let us consider the following auxiliary problem. 
Problem 4.1. Let y (t, X) > 0 for some t E It,,, 61 and x E Hr. Find the 

program u,, (EJ, t < 5 ,< 19 satisfying the condition.: for every program u (87 

Let E (I, z) be the set of all elements r” (t, X) of the unit sphere in U,, forwhich 
the upper bound in (4.2) is reached. 

Lemma 4.3. Let the functional x (r, L) of (4.3) be weakly uppff-semi~onti~- 

ous on Hr. If the program u,, (E), t < g < 6 solves Problem 4.1, then an element 
q” (t, X) E E (t, X) exists for which 

J;;& j w fit9 4, F (6 - E) 4J m, & 

Conversely, every function sa’tisfying the maximum condrtion (4.5) for some q” (t, X) E 

E (t, X) is a solution of Problem 4.1. 

The lemma’s proof is based on the minimax theorem /4/, 
By definition, Ne = Ilif. Prom Theorems 3.1, 4.1, Theorem 1 in /13/, and Lemma 

4.1 follows 

Theorem 4.2. Let Conditions A and B be fulfilled. Problem 2.1 has a solution 

if and only if y (t,, x0) < 0. When this inequality is fulfilled the problem is solved 

by the strategy (4.6) 
Ii" = iY(t,ic)= (U"I(Aa*(y - x), Gz =~ewY - au)%) 

where now y is a (unique) element in Nt , closest to 2 . 
Note 4.3. Wea~rn~a~ve~at i/F(t))/,< expott t>O, W=CO~& 

where c f 1 (this condition played an essential role in the proof of Lemma 3. I.). In the 
general case of a strongly continuous semigroup the original Problem 2.1 can be imbed- 
ded in an analogous control problem in a wider Hilbert space in which there already 
holds the bound needed for the semigroup. As such a space we can take the completion 
HO of space H, with respect to the norm 
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II 5 lb2 = f IJ F (t) z IIt2 exp (- olt) dt, 01>2w 

0 

Let F, (t) be the closure of F (t) from HI onto H,. The semigroup (F, (t), t > 0) is 

strongly continuous and U F. 0) II o < exp qt, t > o (for example, see /ll/). Let us now 

examine Problem 2.1 in space II 0, choosing as the target set the closure M, of set M 
in the new norm. We call this new problem Problem 2. lo. If set M is bounded and 

weakly closed in HI (the latter is ensured, for example, by the convexity and closedness 

of M in H,) and the sets G, (S), G, (fi) (see Condition B) are compact in Jr,, then it 
can be verified that such an imbedding is invariant in the sense that the strategy u sol- 

ving Problem 2.1’ (with z. E HI) also solves Problem 2.1 in space Hi. 

5. The class of controlled systems being considered covers, in particular, certain con- 

trolled systems described by parabolic and hyperbolic partial differential equations. We 

present here an example (also see /5/) which is simple but very important in applica- 
tions. Let Q be a bounded region in the rz-dimensional space IT, , with a 2k times 
continuously differentiable boundary I’, situated locally to one side of I’. Let A (y, 

D) == xlalC2fla (y) Da be a real differential expression, elliptic in a L Q U r‘ *whose 

coefficients aa (y) in G are continuous and have continuous derivatives up to order 

Ial, inclusive ; n,, (9) > 8 > 0 where the number g is sufficiently large. We are 
given the controlled parabolic system 

az (t, Y) - = - A (y, D) z (l, 21) + u (& Y) - v (l7 Y/) + w (i7 9) at (5.1) 

YES& t, < t < 6, z (to, y) = zo E TV;” 

z Ir = a~/& Jr = . . + = d”-lz/dvk-l jr = 0, t,, < t < 6 (5.2) 

Here U, U, w are functions, measurable on T = [t,, 61 X Q , belonging to space 
L, (T) ; for almost all t the controls u E 1’ C j& (Q), v E Q c ,I& (a), where P, 
Q are convex bounded closed sets ; v is the normal to 1’ , outward relative to Q ; W22k 

Fig. 1 

is the Sobolev space : Wz2k = {z (y) 1 Daz E 
L, (Sl), f a 1 < 2k). fie operator A9 (y) = 
__A (y, D) z (y) , defined on the elements 

of Wisk , satisfying conditions (5.2) in the 

sense of imbedding theorems, generates an ana- 

lytic contractive semigroup {F (i!),t > 0) in 

space L2 (a) (for example, see /5, 6, 8- 11, 

20/). 
Thus, we arrive at system (1.1) by setting 

H, = H, = H, = L, (S-J), 1c (t) = 
2 cc ->, 20 = 20, u (t) EE u(t, .), u (t) E 

u (c->, w(t) zw( t?.) .Thefunctions 
(2.1.) are called the motions of system (5.1) 
corresponding to strategy U . Condition B is 
fulfilled here since the set G, belongs to the 
domain of Ala by virtue of the estimate 
and of the boundedness of P , and. further. the 
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operator Al-a is completely continuous in Hr /8, 10, 20/. 
In particular, let 

s&=(0, l), to=& 6=1, z(0, Q=z(1, t)=O,z(O, y}=&)(y) 

Equation (5.1) has the form 

The sets P = Q and M are closed spheres in L, (Cl) of radii p and 1. The encoun- 
ter Problem 2.1 for Eq. (5.3) can be treated as the problem of heating a rod by distri- 
buted sources u (t, y) under the condition of undetermined thermal interference u (t, 
yj. We can make use of Theorem 4.2 to construct the desired control function u . Con- 
dition A (see Note 4.1) and Condition B (see Sect. 5 above) are here fulfilled. The func- 
tional y from (4.2) has the form 

7 (t, z) = {‘s [i G (y, 596 - t> x (8 ~q24$” - h 
0 0 

G (y, 5, t) = 2 5 exp (- (nj)* t) sin j ny sin id 
j=l 

whae G (Y, 5, t) is the function of the influence of the instantaneous point source. 
Let y (t,, za) \< 0. The control u’, dictated by the extremal strategy (4.6), solves 
the problem posed and is determined for almost all t by the rule: if Y (t, z) < 0, &en 

ue is any function from P; if y (tit 2) > 0, then 

where the function hl (y) is the solution of the problem 
1 

s @t(Y) - 
0 

z(~))2~~ =h, ~~i~~~~(~(~) - ~(y))~dy 
.Y,\O 

The motions 

.z @)A = z (& ?!)A = i G (Y, ?., tf 20 (4) de + i 5 G (Y, L t - TN@ W, 4) - v (7, ~))q dr 

0 00 

were simulated on BESM-6 for the initial condition z. = 1000 Y, 0 -S Y d 0.5; z. = 
1000 (1 - y), 0.5 < Y < 1 for the numbers h = 1.484, p = 10 ,and for a partitioning 
A of the time interval [O, 11 into equal parts of length 6 = 0.02 . Figure 1 shows the 
curves 

7. (t) II: (\ 22 (& Y)a dy)l12 
0 

Curve I corresponds to the controls u (t, y) = z&e (t, y, z), u z 0; curve 2 , to the con- 
trols u (t, u) = ue (t, y, z), u (t, y) = ue (t, y, 2); curve 3 , to the controls u (t, y) = 11, 
” (t. y) zz 0. 
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